Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi							
CRM08	Rev 1.10	EC	21/07/2021				

CONTINUOUS INTERNAL EVALUATION- 3

Dept:EC	Sem / Div:IV B	Sub:Analog Circuits	S Code:18EC42					
Date:22/07/2021	Time: 2:00-3:30 pm	Max Marks: 50	Elective:N					
Note: Answer any 2 full questions, choosing one full question from each part.								

	2	Questions	Marks	RBT	COs			
1	N	PART A						
1	a	How does negative feedback affect the performances of an inverting amplifier using opamp? Derive the relevant expressions for Gain, input resistance and output resistance	8	L2	CO4			
	b	Explain the operation of 4-bit Binary weighted DAC with neat circuit. For the Binary weighted DAC, with R=10k Ω and R _F =1k Ω and V _{REF} =5V, determine the output voltage when the inputs b0=b2=0V and b1=b3=5V	8	L3	CO4			
	c	What is an instrumentation amplifier? What are its applications? With a neat circuit diagram explain an instrumentation amplifier using a transducer bridge.	9	L2	CO4			
2	a	Draw the circuit and waveforms for an inverting Schmitt Trigger using opamp, with relevant expressions.	10	L2	CO4			
	b	Draw the circuit of second order high pass filter and explain its operation.	9	L2	CO4			
	c	For an opamp non-inverting amplifier using 741 IC with RL=1 K Ω and	6	L3	CO4			
		$R_F=10K\Omega$, A= 200,000; Ri=2M Ω , Ro = 75 Ω , fo =5 Hz; supply voltages						
L		$\pm 15V$, output voltage swing = $\pm 13V$, Compute AF, Rif, Rof, fF.						
3	a	Explain summing, scaling and averaging amplifier in inverting configuration	8	L2	CO4			
	b	Draw the circuit and frequency response of a first order low pass filter. Design a first order low pass filter to have a cutoff frequency of 1kHz with a passband gain of 2.	10	L3	CO4			
	c	Explain the R-2R DAC with a neat sketch.	7	L2	CO4			
4	a	The opamp 714C is connected as an inverting amplifier with $R1=1k\Omega$	10	L3	CO4			
		and RF=4.7k Ω . Compute the closed loop parameters: AF, RIF, ROF,						
		fF Given A=400000, Ri=33M Ω and RO=60 Ω ; supply voltages are \pm						
		13V; Max output voltage swing = \pm 13V, Unity gain bandwidth =0.6MHz.						
	b	Explain the working of a Successive Approximation type of ADC.	9	L2	CO4			
	c	Explain with a neat circuit diagram, the working of a positive small signal half wave precision rectifier using an Opamp.	6	L2	CO4			

-